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Abstract. The problem of directed polymers in a random medium is generalized to include a
killing probability. The model is then studied using results of the theory of extreme statistics.
These reveal that, in a region of parameters, the thermodynamics of polymers with killing in
finite dimensions is similar to that of the mean field solution of directed polymers on a Cayley
tree. The implication of these results for the behaviour of directed polymers in high dimensions
is also discussed.

1. Introduction

Directed polymers in a random medium (DPRM) [1, 2] have been the focus of great recent
interest. On the one hand it is a prototype model for a system with quenched disorder
[3, 4]. On the other hand, invoking universality, the behaviour of directed polymers has
been related to a number of other problems of great interest [6–8]. Over the last decade,
a satisfactory understanding of the model ind = 1 [2] and d = ∞ dimensions [3–5] has
been reached. The understanding of DPRM in intermediate dimensions is based mainly
on numerical simulations [9, 10]. In particular, the strong coupling phase of the model
has been shown to be beyond the range of standard theoretical approaches [2, 11], because
of the failure of perturbation expansions. One still open question [1, 11–16] concerns the
existence of an upper critical dimension, above which the exponents stick to theird = ∞
values.

We shall consider directed polymers from the point of view of the theory of extreme
statistics [17]. Since the thermodynamics of DPRM is controlled by a zero temperature
fixed point, the problem essentially consists in the characterization of the statistics of the
ground state energy, i.e. of the directed path with the minimum energy. The theory of
extreme statistics [17] appears as a natural candidate to address this question.

The next section shows that, under the assumption of independent and identically
distributed (IID) walk energies, the prediction of the theory of extreme statistics reproduces
almost exactly the result found on the Cayley tree. This suggests a very intuitive
understanding of the behaviour of DPRM ford > dc: the ensemble of walks has the same
properties of non-interacting (i.e. non-intersecting) walks. In section 2.2 the correlation
among walks is taken into account. This turns out to be too strong in order to recover the
IID result. We turn, in section 3, to a generalized model of directed polymers, where a
killing probability is introduced. The latter is tuned in such a way as to eliminate mainly
high energy walks and, at the same time, to satisfy the hypothesis of the theory of extreme
statistics in the presence of correlation. The results obtained, which apply to a region in
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the parameter space where the set of surviving walks is weakly correlated, reveals that this
model, in finite dimensiond > 2, has a phase transition to a low temperature phase which
has the same characteristics of the mean field solution (d = ∞) of DPRM.

In the final section we shall try to extract some information on the original problem
of DPRM from our results on DPRM with killing. It will be argued that our results are
not relevant for the low temperature phase. They yield upper bounds for the ground state
energy and for the transition temperature. However, our model also provides a connection
to directed percolation, which to some extent describes the organization of the disorder.
Exploiting this relation and the results of the previous sections, we will present arguments
which suggest a finite upper critical dimensiondc = 4.

2. Directed walks in random media and extreme statistics

The model of DPRM is defined on a Euclidean lattice. On each sitei a random energyεi is
defined, which is drawn from a distribution densityd

dx
Prob(εi 6 x) ≡ φ(x) (for clarity, we

shall underline the symbols when they refer to random variables). Consider all the directed
walks with a fixed origin and of lengthL. Directed means that each step of the walk has
a positive component in the ‘time’ direction, so that the walkw passes through the sites
iw(t) = (rw(t), t) where t = 0, . . . , L and rw(0) = 0. If the coordination number of the
lattice in the ‘space’ sub-lattice isz, there will beN = zL distinct walks. The energy of
a walk is the sum of the random energies of the sites it passes through:Ew = ∑

t εiw(t).
Introducing a temperatureT , one can now build a partition functionZ(T , L) and all the
thermodynamic quantities which are related to it. For dimensionsd > 2 there is a phase
transition between an entropy dominated phase, forT > Tc, and an energy dominated one
for T < Tc. In the latter phaseZ is dominated by the walk with the smallest energy
E< = minw{Ew}, hereafter called the ground state (GS). The problem is to characterize the
L dependence ofE<(L):

E<(L) = αL + bL1−1 + cLω3. (1)

where the first term is the extensive part ofE<(L), the second is a scaling correction, and
the third describes the sample to sample fluctuations ofE< < (L) (3 is anL-independent
random variable). The behaviour of the amplitude of the fluctuations ofE<(L) with L,
defines the exponentω, which is the quantity of interest one would like to calculate as a
function of the space dimensionalityd. The exponentω is known to be1

3 in d = 1 + 1,
and to be zero in the limitd → ∞. The first terms of the 1/d expansion [14] as well as
other recent investigations [12, 16, 11], suggest thatω(d) vanishes at a finite dimensiondc

and then stays zero ford > dc.

2.1. Independent walks

In this section, we define a ‘walk’w as a collection ofL sitesiw. The energyEw of the
walk, is the sum ofL independent ‘site’ energiesεiw

, and it is itself an independent variable
for each walk. The distribution density ofEw is obtained in the usual way:

p(E) =
∞∫

−∞

dk

2π
〈e−ikx〉LeikE (2)

where here and in the following〈·〉 = ∫ ∞
−∞ φ(x)(·) dx and we consider zero average and

unit variance site energies:〈ε〉 = 0, 〈ε2〉 = 1.
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The distribution ofE< = min(E1, . . . , EN), for N = zL independent variables is
obtained in the following way. The probability thatE< > x, which is 1− P<(x), is the
probability that all theEw > x, i.e. P<(x) = 1 − [1 − P(x)]N . To obtain a finite limit we
have to shift and scaleE< in an appropriate way,E< = aL + bL3, so that the distribution
of 3 is non-degenerate and independent ofL. The application of these arguments to our
case is discussed in detail in appendix A. The result is that

E< = αL + 1

γ

[
1

2
ln(2πσ 2γ 2L) + 3

]
(3)

where3 is a random variable with distribution density

λ(x) = exp[x − exp(x)]; (4)

α andγ are given by equations

α = 〈xe−γ x〉
〈e−γ x〉 = − 1

γ
ln(z〈e−γ x〉). (5)

and

σ 2 = 〈x2e−γ x〉
〈e−γ x〉 −

( 〈xe−γ x〉
〈e−γ x〉

)2

. (6)

This result (called the IID result for short, in the following) requires, as seen in the appendix,
that φ(x) has finite moments of all orders.

In the limit L → ∞ the central limit theorem would suggest thatEw are Gaussian
variables. However, the limit involved in the theory of extreme statistics, probes the tails
of the distribution ofEw, where the central limit theorem does not hold. This is why, for
power law distributionsφ(x) ∼ x−µ−1, even if the second moment ofφ(x) is finite, one
can expect an anomalous behaviour with the exponentω depending onµ even forµ > 2, as
seen ind = 1+ 1 simulations [18]. Note that the distributionλ(x) is highly asymmetric in
the tails. The exponential decay forx → −∞ agrees with the argument of [19] forω = 0,
while for x → ∞ it drops to zero much faster. A similar, less pronounced, asymmetry was
found in finite dimensions [9].

Comparing equation (3) with equation (1) one concludes thatω = 0. The expression
for the energy densityα coincides with that obtained for the Cayley tree. The expression
of the coefficient of the random part also coincides, whereas that of the logarithmic part
differs by a factor of 3. This suggests that on the Cayley tree walk energies cannot be
considered as independent random variables either. Under the assumption of independence,
the model is essentially a version of the random energy model [20], studied in the context
of spin glasses.

2.2. Correlated walks

A simple observation, which casts serious doubts on the possible relevance of this result to
DPRM in any dimension, is that thezL variablesEw are built using onlyLd+1 independent
variablesεr . One can, however, resort to the following result of the theory of extreme
statistics [17]: consider the setCL of all the pairs(w, v) of indices such thatEw andEv

are dependent. If (i) the number of correlated pairs,|CL| is a negligible fraction of the total
number of pairs, and (ii) if, forUL = aL + bLx, with aL andbL given by the expressions
for independent walks,

lim
L→∞

∑
(w,v)∈CL

P (Ew < UL; Ev < UL) = 0 (7)
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thenE< = min{E1, . . . , En} = aL+bL3, with aL, bL and the distribution of3 given by the
IID result of the previous section. Therefore,only a global control of pairwise correlation
in the tail of the distribution is needed for the IID result to hold. Moreover, one needs to
consider only the marginal distributions of one walk and of a pair of walks.

The correlation〈EwEv〉 = mw,v between two walk energies, assuming that〈ε2〉 = 1, is
equal to the numbermw,v of sites on which these intersect [21]. Ind 6 2 the number of
intersections of two random walks diverges with their length, while above two dimensions
mw,v is almost surely finite. Therefore,CL, the set of pairs of walks which intersect at
least in one point, essentially coincides with the set of all pairs ford 6 2. We can make
the number of correlated pairs|CL| small with respect to the total number of walks, and
therefore satisfy condition (i), only ind > 2. This is achieved by neglecting the contribution
to the energyEw of the first` steps. Out of all the pairs of walks, only those which intersect
after ` steps have correlated energies. Ifd > 2, it is enough to takè ∼ ln L, which is
negligible as compared toL as L → ∞, in order to satisfy the first condition. Therefore
for d > 2 the first condition can be satisfied by an appropriate adjustment of sub-leading
terms of order lnL.

The second condition, equation (7), can be checked by a direct calculation as explained
in appendix B. The condition under which the IID result holds, is that

5〈e−2γ ε〉 6 〈e−γ ε〉2. (8)

Hereγ is the parameter defined in the previous section and5 is the return probability of
a walk on thed-dimensional lattice. This yields the probabilityQm ∝ 5m that two walks
havem intersections.

For example, for normal site energies, for whichα = −√
2 lnz, the inequality (8) reads

(see appendix B)5z2 6 1. Unfortunately this does not hold for any Euclidean lattice,
where5z > 1. It also fails to apply to the Cayley tree, which has a scaling limit very
close to the result for IID variables. This suggests that one needs a further ingredient to
apply these results of extreme order statistics to the DPRM. The key observation is that
in the saddle point evaluation of equation (7) one finds a term which depends only on the
number of walks and another term depends only on correlation (i.e. on5). It is impossible
to decrease the correlation between walks on a given lattice, but it is however very easy to
decrease their number, i.e. by annihilating them.

3. Walks with killing

Let us introduce a killing probability 1− p in the DPRM model: a walk is killed with
probability 1− p on each site and otherwise it survives. We shall allow the probabilityp

to depend on the valueεi of the energy on sitei.
Let Si be the set of walks arriving at sitei = (x, t), which survive all killing attempts.

We shall frequently denote byS the set of all walks of lengthL which survive the killing
process. Before analysing the extreme statistics of this model let us mention that a partition
function can be introduced also in this model:

Zi(β) =
∑
w∈Si

e−βEw . (9)

The usual recursion relation for DPRM, however, cannot be generalized to walks with
killing. Indeed writing explicitlyZi for a walk of t + 1 steps (i = (x, t + 1)) one finds:

Z(x,t+1)(β) = e−βε(x,t+1)
∑
(y,x)

∑
w∈S(y,t)

κw,te
−βEw . (10)
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Here the first sum runs over thez neighbour sites ofx and the second over all the walks
which survive up to(y, t). The random variableκw,t takes the value 1 with probability
p(ε(x,t+1)) and is 0 otherwise. Sinceκw,t depends on the walk’s indexw, the right-hand
side cannot be expressed in terms ofZ(y,t). Appendix C analyses the recurrence relation
which results from taking the average over the variablesκ in equation (10).

Killing reduces the number of walks. The probability that the walkw survives is given
by

Ps(w) =
L∏

i=1

p(εiw
). (11)

The numbern of surviving walks is a random number. Its average is equal to [z〈p(ε)〉]L,
where〈p(ε)〉 is the average probability of surviving. In order to have a macroscopic number
of walks, so that taking the minimum has some sense, we shall require

z〈p(ε)〉 > 1. (12)

For correlated walks, as we shall see, we need an additional condition to be sure thatn is
macroscopic.

3.1. Independent walks with killing

Killing introduces an additional source of randomness, related to the particular realization
of the setS of surviving walks. For each realization ofS, under the assumption of
independence, one should consider the limitL → ∞ as done in appendix A. The problem
is to find the constantsaL andbL such that

lim
L→∞

∑
w∈S

P(Ew < aL + bLx) = c(x)

If n is macroscopic, i.e. exponentially large inL, one can assume that almost all realizations
of S will yield the same result. Therefore one can calculate the coefficientsaL andbL for
which the average of the above equation is finite. Apart from this, the calculation ofaL and
bL follows exactly the same lines of appendix A, provided that a factorp(x) is inserted in
each average. More precisely one finds that equation (3) holds withα andγ given by

α = 〈xp(x)e−γ x〉
〈p(x)e−γ x〉 = − 1

γ
ln[z〈p(x)e−γ x〉]. (13)

The same result can be reached by considering one typical realization ofS. The number
of walks in a typical sample isn ' (z〈p(ε)〉)L. The effective site energy of sites on which
the walks survive is

φ̃(x) = 1

〈p(ε)〉p(x)φ(x). (14)

Therefore one can repeat the derivation of appendix A and recover equations (13).

3.2. Correlated walks with killing

The first effect of correlation is to make the stochastic nature of the variablen slightly more
complex. It can be shown, following standard methods [22], that a sufficient condition for
n to attain a macroscopic value with large probability, is that

5̃ ≡ 5
〈p2(ε)〉
〈p(ε)〉2

< 1. (15)
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The argument goes roughly as follows. The variableW = n/(z〈p(ε)〉)L has a limit
distribution whenL → ∞. All one needs to show is that this limit distribution is not
degenerate, i.e.p(W) 6= δ(W). In order to show this it is enough to show that the second
moment ofW is finite, which leads to the condition (15).

Equation (15) can also be understood more simply by observing that the left-hand side
is the probability5̃ that two walks inS intersect, renormalized by the effect of killing.
Consider indeed two walksw andv. The probability that each of them belongs toS is given
by equation (11), which is on average〈p(ε)〉L. However, ifw andv intersect onm sites, the
probability that both belong toS is not〈p(ε)〉2L but rather〈p(ε)〉2(L−m)〈p2(ε)〉m. Therefore
the probability that two walks intersect onm sites and belong toS can be expressed as the
probability that each of them belongs toS, which is〈p(ε)〉2L, times the effective probability
of m intersections5̃m. Clearly one needs̃5 < 1 in order to have a normalizable distribution
of m. 5̃ > 1 means that the walks inS, if any, are highly correlated. Note that, since
〈p2(ε)〉 > 〈p(ε)〉2, killing in general increases the correlation between walks.

The necessary condition required to recover the IID result is

lim
L→∞

∑
(w,v)∈CL(S)

p(w,v)(aL + bLx, aL + bLx) = 0 (16)

where CL(S) is the set of pairs(w, v) of indices of walks for which the number of
intersectionsmw,v > 1. We will take the average of equation (16) over the realizations
of S, assuming that the result is self-averaging. In doing this, one incurs the risk that the
limit is dominated by rare realizations ofS for which equation (16) is exceptionally large.
However, if the average over realizations of equation (16) vanishes, it surely vanishes for
the typical realization.

In order to evaluate the average of equation (16) one writes the sum over pairs
(w, v) ∈ CL(S) as a sum over all pairs times an indicator functionI(w,v) which is 1 if both
walks survive and 0 otherwise. The average can then be exchanged with the summation
and one is left with the evaluation ofI(w,v)p(w,v)(aL + bLx, aL + bLx). This is simply the
probability that two walks have energiesaL + bLx and that they both survive, and it is
easily evaluated. It is then straightforward to apply the considerations of section 2.2 and
appendix B and to arrive at the condition

5
〈p2(ε)e−2γ ε〉
〈p(ε)e−γ ε〉2

6 1 (17)

for the validity of the IID result. Hereγ is given, together withα by equations (13).
The same result can be found by considering a typical realization ofS in which

n = [z〈p(ε)〉]L walks survive. The pairwise correlation between these walks is described
by 5̃ as given in equation (15). Finally one needs to consider an effective distribution for
the site energies. However in this case equation (14) does not apply to the sites where the
walks intersect. On these sites, indeed, the effective distribution has to account for the fact
that both walks survive, i.e.̃φ(x) = p2(x)φ(x)/〈p2(x)〉. The considerations of appendix B
lead easily to the above condition. Note that if (17) holds withγ > 0, then5̃ < 1, which
implies thatn ∼ [z〈p(ε)〉]L is indeed macroscopic.

3.3. Results

In order to illustrate the procedure and to draw conclusions we need to specify the model.
This is defined by:

(i) the site energy probability distributionφ(x);
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(ii) the geometry of the lattice, which yieldsz(d) and 5(d) as function of the space
dimensionality;

(iii) the killing probability p(x).
Let us focus on standard normal site energies and consider walks in thet̂ = (1, 0, . . . , 0)

direction of a hypercubic lattice withrw(t+1) = rw(t)+ t̂±x̂i with i = 1, . . . , d. Therefore

z = 2d and 5 = 1 −
{∫ π

−π

ddk

(2π)d

[
1 − 1

d

d∑
i=1

coski

]−1}−1

. (18)

Since we are interested in the statistics of low energy walks without killing, we shall use
the functionp(x) in a variational way. In practice we shall consider a family of functions
{p(x)} and calculate, if possible, the GS energyα[p(x)] for eachp(x). Finally we shall
look for the functionp(x) which minimizes the GS energy. The following:

αmin = min
p(x)

α[p(x)] (19)

will be our best estimate (upper bound) of the GS energy of DPRM.
In order to find a suitable set of functions we observe thatp(x) should eliminate mainly

the high energy walks. The simplest way of achieving this is to takep(x) = 1 for x 6 τ .
In this way walks can be killed only when they step on sites with energy bigger thanτ . If
one could takeτ big enough so that no site of the best path has an energy bigger thanτ ,
one would be sure that the GS walk is in the setS. We shall see that this is not possible
in principle, since it is possible to find very large site energies on the best path. Since the
minimization applies to the sum of site energies, we still have a probability that low energy
walks, and eventually the GS walk, gets killed during one of its rare passages on sites of
energy bigger thanτ . Typically the smallest among the surviving walks will have a bigger
energy than the global GS walk. A second important feature is how the killing probability
depends on the energy of sitei for εi > τ . The simplest choice is to take a Boltzmann
factor-like surviving probability

pη,τ (x) = θ(τ − x) + e−η(x−τ)θ(x − τ). (20)

With this choice, the surviving probability of a walk will depend on the total energy of
sites above the threshold:Ps(w) = e−ηE>(w) whereE>(w) = ∑

i (ε
(w)
i − τ)θ(ε

(w)
i − τ).

The parameters inp(x) will be tuned in a variational way, in order to find the values for
which the condition (17) holds and the GS energy per siteα is minimum. One could easily
think of more complexp(x). p(x) in equation (20) seems to be the natural choice in our
problem where the minimization involves the energy. We indeed found that, of all thep(x)

we considered, this gave the minimum energy. It is very easy to find the equations which
yield α andγ . However, since they are implicit equations and their form is not particularly
illuminating, we refrain from displaying them.

Let us discuss the results as a function ofη. The region of parameters(η, τ ) where
z〈p(ε)〉 > 1 and the condition (17) holds, for a given dimensiond > 2, is schematically
depicted in figure 1. Below this region, ifτ is too small, there are no surviving walks,
i.e. z〈p(ε)〉 < 1. Above this region, instead, the walks are too strongly correlated and the
condition (17) does not hold. Technically, the saddle point calculation of equation (16)
shows that the sum is dominated by pairs(w, v) of walks with an ‘extensive’ number of
intersectionsmw,v ∝ L. This signals the need for different normalization coefficients,aL

andbL.
In the shaded region of figure 1, the minimum value ofα, for fixed η, is obtained when

the inequality (17) is saturated, i.e. for the maximum value ofτ (indeed the left-hand side
of the inequality (17) is an increasing function ofτ , while α, for fixed η, is a decreasing



5412 M Marsili

Figure 1. Schematic ‘phase diagram’ for walks with killing. Below the shaded region the
number of surviving walks is zero. In the shaded region the results discussed in the text apply.
The upper boundary of the shaded region is where (14) turns into an equality. Above the line
τ = τc the sites wherep(ε) = 1 percolate through the lattice.

function of τ ). Since we are looking for the minimumα, we shall fixτ(η) as a function
of η, in such a way that (17) becomes an equality. In this case, the arguments of [21]
show thatγ is the inverse critical temperature for the set of walks with killing. As shown
in appendix C, the entropy vanishes at the transition and remains zero in the whole low
temperature phase. This situation is similar to the solution of DPRM on the Cayley tree [3].
Indeed, as for directed polymers on a Cayley tree, the low temperature phase is completely
frozen.

For η = 0 we can apply the IID result if we takepη,τ (x) → p asη → 0. This implies
τ → −∞. One can easily find that, in this case

lim
η→0

γ = − lim
η→0

α = √− ln 5. (21)

In this limit we recover the upper bound to the critical temperature obtained in [21].
As η increases bothγ andα decrease initially. The behaviour is sketched in figure 2

for d = 4 and 6 (note that both the energies andη are scaled to the IID result by a factor√
2 lnz). For high enough dimensionsd > d0, α(η) reaches at some point a minimumαmin

and then starts to increase. Hered0 is a dimension which depends on the structure of the
lattice throughz and5. Ford < d0 the increasing branch ofα(η) is absent. This is because
the IID result applies as long as both the inequalities (17) andz〈p(ε)〉 6 1 can be satisfied.
There is a maximum value ofη ≡ η+ above which this will no more be the case which is
given by saturating both inequalities. It is straightforward to check that the equation forη+
andτ(η+) = τ+ is

z〈pη+,τ+(ε)〉 = z25〈p2η+,τ+(ε)〉 = 1. (22)

Note that for the Cayley tree5 = 1/z, thereforeη+ = ∞ and z〈p∞,τ∞(ε)〉 = 1. For any
Euclidean lattice the equation (22) will be satisfied for a finiteη+ < ∞. Note also that,
as η → η+, γ → 0. This implies on one hand that in the setS all walks have energy
equal to the minimum energy. On the other hand it implies that the critical temperature for
the ensembleS of walks is infinite. This is reminiscent of directed walks ind 6 2, i.e.
of a situation of highly correlated walks. Indeed in this case the number of walks is not
macroscopic: withγ = 0 the equality in (17) implies that̃5 = 1.
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Figure 2. Behaviour ofα as a function ofη for d = 4 andd = 6. The data are scaled by the
GS of independent walksα0 = (2 lnz)1/2. τ , which is fixed by saturating the inequality (14),
is also shown as a dotted curve for the same dimensions. Ford = 4, τ lies belowα, whereas
for d = 6 the two curves intersect. Inset: minimum GS energyαmin, and relative value ofτ
(dotted curve) as a function ofd.

Finally note that there is a second dimension,d1, above which the energy of the GS
lies below the thresholdτ . This does not however mean, as we shall discuss later, that the
GS path lies mostly on sites with energiesεi < τ . Also the value ofd1 is non-universal, in
the sense that it depends onz and5 which are non-universal numbers.

4. Discussion

We have shown that directed polymers in a random medium with killing, within a range
of the parameters, has a low temperature phase with an exponentω = 0 for the scaling
behaviour of the sample to sample fluctuation of the GS energy withL, for d > 2. It is
easy to realize that, even though we tried to build our model to eliminate mainly low energy
walks, the setS almost surely misses the true GS, that of walks without killing. To see this
let us consider the distribution of one site energy along the GS path of walks with killing.
It is easy to see that, since the sum of the site energies along the path is constrained to
have fluctuations of order 1, also each site energy has fluctuation of order one around its
average valueα (this has been shown also for DPRM on the Cayley tree [4]). Therefore
the probability that the energy of a site exceeds the thresholdτ is finite and the number of
sites, on the GS path, with energyεi > τ increases linearly withL. This means that the
surviving probability is exponentially small for walks with energyαL. Since our calculation
reveals that typically one of these walks survives the killing process, one concludes that
their number is macroscopic, i.e. exponential inL. In other words the entropy of DPRM
for energiesαL is extensive and finite. This implies that our results explore only the high
temperature phase of DPRM. The above result then yields an upper bound to the GS energy,
i.e. the minimumαmin obtained for a given dimensiond. Note that, using the expression of
the energy in the high temperature phase [21], this also yields an upper bound to the critical
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temperatureTc [23]. The minimumαmin, as a function of dimension, is plotted in the inset
of figure 2.

The fact that, on the GS path, each site energy can have fluctuations of the same order
as the total energy, forω = 0, has striking consequences. The first is that, for Gaussian site
energies, the largest site energy on the GS can be as large as

√
2 lnL. Furthermore the site

energies on the GS path have a negative pairwise correlation. To see this it is enough to
note that〈(δE<)2〉 = L〈(δεi)

2〉 + L(L − 1)〈δεiδεj 〉 wherei andj are two sites on the GS
path. If 〈(δεi)

2〉 ' 1, in order for〈(δE<)2〉 to be finite it is necessary that〈δεiδεj 〉 ∼ −L−1.
One interesting feature of our model is that it allows us to relate the DPRM problem

with directed percolation. This relation has already been exploited in various disguises by
many authors [15, 23, 24]. In our case, one can define a cluster of directed percolation
at concentrationρ(τ) = ∫ τ

−∞ dx φ(x), as the set of sites which can be connected to the
origin by directed paths on sites with energies less thanτ , i.e. with p(εr) = 1. As
ρ → ρc ≡ ρ(τc), the directed percolation threshold, this construction results eventually
in an infinite percolating cluster.

Our previous argument, which suggests that the maximum site energy on the GS path
can be as big as

√
ln L, suggests that no matter what thresholdτ one fixes, the GS path

will sooner or later abandon the percolating cluster and minimize its energy by finding
more favourable regions where the energy is small. This fact, by itself, implies that the GS
path of DPRM will wander more than any path in a percolating cluster, and in particular
more than paths within the incipient percolating cluster atτc. The wandering of the latter
is described by an exponentζDP = ν⊥/ν‖, whereν⊥ andν‖ are the exponents with which
the correlation lengths in the space and time direction respectively diverge asτ → τ−

c in
directed percolation. Therefore one finds the exponent relation

ζ > ζDP . (23)

SinceζDP = 1
2 only for d > 4, this implies thatω = 2ζ − 1 = 0 cannot apply tod < 4,

i.e. dc > 4. The inequality (23) was originally derived by Bouchaud and Georges [15].
The remainder of this section discusses how the results presented so far could be

extended to an argument fordc = 4.
It has been argued [24] that, as long asτ > τc, the statistical properties of the sub-set

of directed polymers constrained in directed percolation clusters (η = ∞) are the same
as those of the whole unconstrained set. The behaviour atτ = τc, η = ∞ belongs to a
new universality class because the constraint imposed by directed percolation becomes too
strong. To see this it is enough to observe that at(η, τ ) = (∞, τc) the number of surviving
walks is not macroscopic. This is not so ifη is finite. This therefore suggests that

(i) the DPRM universality class extends at least down to the lineτ = τc in the (η, τ )

plane (shown as the dashed region in figure 1).
Even though, as shown in figure 1, our results apply only in a region below the line

τ = τc, it is interesting to consider ideally the situation withτ = τc andη � 1 finite. Then
in the setS there will be mainly walks which follows the percolating cluster, where there
is no suppression becausep(εi) = 1. Following arguments similar to those used in [26],
one can observe that the intersection of the incipient percolating cluster with a ‘constant
time’ hyperplane, can be described as a fractal of dimensionD = 2, in d > 4. Two
such clusters starting from different points will intersect, at timet , on a set of dimension
DI = 2D − d = 4− d. If DI < 0, which happens ford > 4, this result is to be interpreted
probabilistically: the probability of having a non-empty intersection at timet is ∼ tDI .
For d > 4, directed percolation identifies infinite routes to infinity. One can exploit this
geometrical information in our case by the following argument. Consider two different
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realizationsS1 and S2 of the killing process in the same disorder realization. Letw̄1 and
w̄2 be the GS paths in the two realizations. Assumption (i) states that their behaviour is
characterized by the same exponents which describe the low temperature phase of DPRM.
In regions inside the percolation cluster, the two walks will experience a large effective
attraction, because both will follow the best energy path. However, in regions outside the
cluster, they will be scattered randomly by the killing process. As a result, even ifw̄1 and
w̄2 coincide inside the cluster, they will probably diverge outside it. They will, therefore,
probably re-enter a region wherepη,τc

(εi) = 1, the percolating cluster, in different points.
For d < 4, even in this case, the two paths have a large probability to meet again, because
the percolating cluster itself is connected. Even if the the two paths join the cluster in two
branches which are distinct at timet , the latter will sooner or later merge into a single
branch. In contrast, ind > 4, these two branches will, most likely, never meet. It is
therefore very likely that the two walks will also miss each other ind > 4. This argument
suggests that

(ii) low energy walks (such asw1 andw2) will intersect in a number of pointsm which
diverges with the length of the walksL in d < 4, but which is finite ind > 4.

We can use this estimate of the correlation between low energy walks, to get a rough
evaluation of the exponentω. This can be done under the assumption that

(iii) the distribution of the energies of low energy walks is Gaussian with a correlation
coefficient〈δEwδEv〉 ' m.

The assumption of a constant correlation is not crucial and can be relaxed considerably
[17]. The real assumption here is on the form of the distribution. The Gaussian form is,
however, the only one for which results are available for any, even strong, correlation.

The minimum among a macroscopic number (exponential inL) of Gaussian variables
with fluctuations〈(δEw)2〉 ∼ L and correlation〈δEwδEv〉 ' m(L) is [17] a variable which
has fluctuations proportional toLω ∼ √

m(L) (providedm(L)L−2/3 → 0 asL → ∞). Our
previous argument, suggestingm(L) ∼ constant ford > 4, would therefore lead to the
conclusion thatω = 0 for d > 4, i.e.dc = 4.

The assumptions (i), (ii) and (iii) involved in the above arguments, and therefore the
conclusions, are clearly of a speculative nature at this stage. However, we think the argument
provides a likely geometrical picture for the emergence of an upper critical dimension in
the DPRM problem and we hope it can encourage further efforts in this direction.
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Appendix A. Independent walks

The limit distribution of the minimumE< = min(E1, . . . , EN), amongN = zL independent
and identically distributed variables is obtained observing that ifE< > x, then theEw > x,
∀w. The probability of the two events are therefore equal:P<(x) = 1− [1−P(x)]N where
P(x) = ∫ x

p(E) dE is the cumulative distribution ofEw. This probabilityP<(x), which
defines the distribution ofE<, has a finite limit asL → ∞ if one can find constantsaL and
bL such thatE< = aL + bL3, and the distribution of3 is non-degenerate and independent
of L. In order for

lim
L→∞

P<(aL + bLx) = lim
L→∞

1 − exp{zL ln[1 − P(aL + bLx)]}
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to be finite it is clear that one has to look for values ofaL andbL for which P(aL +bLx) ∼
z−L. Defining

c(x) = lim
L→∞

zLP (aL + bLx)

one finds easily that the limit distribution is

lim
L→∞

P<(aL + bLx) = exp[−c(x)]. (A1)

Anticipating thatbL = b is a constant, we can further simplify the evaluation ofc(x) by
taking the derivative of both sides:

d

dx
c(x) = b lim

L→∞
zLp(aL + bx) = b lim

L→∞

∫ ∞

−∞

dk

2π
[z〈e−ikx〉]L exp[ik(aL + bx)] (A2)

where we used equation (2). Let us chooseaL = α L + α′ ln L + α′′, with α, α′ and α′′

constants. The integral in equation (A2) is dominated by the saddle point forL → ∞.
Collecting terms exponentially large inL, we find that the integral is dominated by the
value ik = γ which is the solution of

〈xe−γ x〉
〈e−γ x〉 = α. (A3)

In order to have a finite limit one has also to require thatα is such that the coefficient of
L in the exponential vanishes. This leads to

α = − 1

γ
ln(z〈e−γ x〉). (A4)

Note that equations (A3) and (A4) have, in general, two solutions. Indeed if we had asked
about the maximum energy, instead of the minimum, we would have gone through exactly
the same steps. Of these solutions we shall focus on the one with the smallest value ofα.
It is easy to see that, in this case, the dominant saddle point value corresponds to the largest
value ofγ .

If α andγ satisfy these two equations, the limit is dominated by the Gaussian fluctuations
around the saddle point:

d

dx
c(x) = b lim

L→∞

∫ ∞

−∞

dk

2π
exp

[
−Lσ 2

2
(k − iγ )2 + ik(α′ ln L + α′′ + bx)

]
= lim

L→∞
bLγα′

eγ (α′′+bx)

√
2πσ 2L

where

σ 2 = − d2

dk2
ln〈eikx〉

∣∣∣∣
k=iγ

. (A5)

In order to make the limit finite we need 2γα′ = 1. Choosingα′′ and b in such a way
that the limit equals ex , we find equation (3) and the distributionλ(x) of 3. Finally,
equation (A5) yields equation (6).
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Appendix B. Correlated walks

As before, the problem can be simplified by considering probability densities instead of
cumulative distributions. Therefore one has to evaluate∑

(w,v)∈CL

p(w,v)(UL; UL) = |CL|
L∑

m=1

Qmp(UL; UL|m) (B1)

whereQm ∼ 5m is the probability that two walks intersect (5 is the probability for one
intersection) and we have introduced the joint probability densityp(x; y|m) for the energies
of two walks which intersect inm sites. This is given by

p(UL; UL|m) =
∫ ∞

−∞

dk

2π

∫ ∞

−∞

dk′

2π
ei(k+k′)UL〈e−ikε〉L−m〈e−ik′ε〉L−m〈e−i(k+k′)ε〉m. (B2)

Collecting this information and usingCL ∼ z2(L−`), we find

z2(L−`)
L∑

m=1

Qmp(UL; UL|m) = Lz−2`

∫ 1

1/L

dµ

∫ ∞

−∞

dk

2π

∫ ∞

−∞

dk′

2π
eLG(ik,ik′|µ) (B3)

where

G(x, y|µ) = α(x + y) + (1 − µ)(ln〈e−xε〉 + ln〈e−yε〉) + µ ln〈e−(x+y)ε〉 + 2 lnz + µ ln 5.

(B4)

For each value ofµ the integrals ink andk′ are dominated by a saddle point. The location
of the saddle point is given by∂xG(x, y|µ) = 0 and∂yG(x, y|m) = 0. Because of the
symmetryx ↔ y there will be a solutionζ = x∗ = y∗. There could in general be others but
we neglect this possibility (in all the cases examined there were no ‘asymmetric’ solutions).
Thereforeζ = x∗ = y∗ is given by the equation

∂xG(x, ζ |µ)|x=ζ = α − (1 − µ)
〈εe−ζε〉
〈e−ζε〉 − µ

〈εe−2ζε〉
〈e−2ζε〉 = 0. (B5)

It is easy to show thatζ(µ) is a decreasing function ofµ ∈ [0, 1]. Moreover,
ζ(µ = 0) = γ and ζ(µ = 1) = γ /2, as is evident by comparing equations (B5) and
(A4). For µ = 0, G(ζ, ζ |0) = 2(αζ + ln〈e−ζε〉 + ln z) = 0 which is the equation which
fixes γ . Finally, if

d

dµ
G(ζ, ζ |µ) = ∂

∂ζ
G(ζ, ζ |µ)

dζ

dµ
+ ∂

∂µ
G(ζ, ζ |µ) = ln

[
5〈e−2ζε〉
〈e−ζε〉2

]
6 0 (B6)

one can conclude that the integral inµ is dominated byµ = 0 and the limit vanishes
provided ` ∝ ln L is big enough. One can verify that the quantity in equation (B6) is
an increasing function ofζ , which is also necessary in order for Gaussian fluctuations
around the saddle point to be stable. Therefore, sinceζ(µ) ↓ µ, one only needs to verify
equation (B6) forµ = 0. This is just the inequality (8).

For example, in the case of normal site energies, for whichα = −√
2 lnz, it is

straightforward to findG(x, y|µ) = α(x +y)+ (x2 +y2)/2+µxy +α2 +µ ln 5. Therefore
there is only one saddle point solution to∂xG(x, y|µ) = α + x + µy = 0 with

x = y = ζ ≡ − α

1 + µ
(B7)

which is clearly a decreasing function ofµ, and leads to

G(ζ, ζ |µ) = µα2

1 + µ
+ µ ln 5. (B8)

One can verify thatG(ζ, ζ |µ) 6 0 if the condition (8) is matched, that is if5z2 6 1.



5418 M Marsili

Appendix C. Thermodynamics of walks with killing

Taking the average of equation (10) over the variablesκw,t , leads to

Zi(β) = e−βεi p(εi)
∑
(j,i)

Zj (β) (C1)

where i = (x, L + 1) and the sum runs on thez neighbours(y, L) of i. This equation
states that a fraction 1− p(εi) of all the walks arriving at sitei = (x, L + 1) is suppressed
by killing at the(L + 1)st step irrespective of the energyEw(L) accumulated by the walks
in the previousL steps. The effect of killing, here, is accounted for by observing that only
a fractionp(ε(x, L + 1)) of the partition function up to stepL ‘survives’. SummingZi(β)

over all the sitesi = (x, L) at ‘time’ L yields the partition functionZ(β, L). It is easy to
find the expression for the free energy (density) in the high temperature phase

F+(β) = − 1

βL
ln〈Z(β, L)〉 = − ln[z〈p(ε)e−βε〉]

β
. (C2)

From this one can find the average energy

U+(β) = ∂

∂β
[βF+(β)] = 〈εp(ε)e−βε〉

〈p(ε)e−βε〉
and therefore the entropy

S(β) = β(U+ − F+) = β
〈εp(ε)e−βε〉
〈p(ε)e−βε〉 − ln[z〈p(ε)e−βε〉]. (C3)

Note thatS(β) vanishes atβ = γ , whereγ is defined in equation (13). One can show,
following [21], that the expression (C2) yields the true free energy for anyβ such that

lim
L→∞

〈Z2(β, L)〉
〈Z(β, L)〉2

< ∞. (C4)

Indeed in this case one can conclude that〈ln Z(β, L)〉 = ln〈Z(β, L)〉. It is easy to verify
that equation (C4) holds if

5
〈p2(ε)e−2βε〉
〈p(ε)e−βε〉2

6 1. (C5)

Since the left-hand side is an increasing function ofβ, this equation holds forβ 6 βc where
βc is defined as the temperature for which (C5) turns into an equality. If, as previously,
the parameters inp(x) are chosen in such a way as to recover the IID result and to
minimize the GS energy, the equality in equation (17) implies thatβc > γ . Note that for
βc < γ , equation (C3) would yield a negative entropy. This is clearly a shortcoming of
the approximation in equation (C1). Physically it means that the walks which dominate the
partition sumZ(β, L) survive with an exponentially small probability. In order to overcome
these problems one should take the average over the variablesκ of the logarithm of the
partition function, by e.g. the replica trick, and not of the partition function itself as done
in equation (C1).
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